Photoreactivation is the main repair pathway for UV-induced DNA damage in coral planulae.
نویسندگان
چکیده
The larvae of most coral species spend some time in the plankton, floating just below the surface and hence exposed to high levels of ultraviolet radiation (UVR). The high levels of UVR are potentially stressful and damaging to DNA and other cellular components, such as proteins, reducing survivorship. Consequently, mechanisms to either shade (prevent) or repair damage potentially play an important role. In this study, the role of photoreactivation in the survival of coral planulae was examined. Photoreactivation is a light-stimulated response to UV-damaged DNA in which photolyase proteins repair damaged DNA. Photoreactivation rates, as well as the localization of photolyase, were explored in planulae under conditions where photoreactivation was or was not inhibited. The results indicate that photoreactivation is the main DNA repair pathway in coral planulae, repairing UV-induced DNA damage swiftly (K=1.75 h(-1) and a half-life of repair of 23 min), with no evidence of any light-independent DNA repair mechanisms, such as nucleotide excision repair (NER), at work. Photolyase mRNA was localized to both the ectoderm and endoderm of the larvae. The amount of cell death in the coral planulae increased significantly when photoreactivation was inhibited, by blocking photoreactivating light. We found that photoreactivation, along with additional UV shielding in the form of five mycosporine-like amino acids, are sufficient for survival in surface tropical waters and that planulae do not accumulate DNA damage despite being exposed to high UVR.
منابع مشابه
Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair.
Nucleotide excision repair (NER) and DNA repair by photolyase in the presence of light (photoreactivation) are the major pathways to remove UV-induced DNA lesions from the genome, thereby preventing mutagenesis and cell death. Photoreactivation was found in many prokaryotic and eukaryotic organisms, but not in mammals, while NER seems to be universally distributed. Since packaging of eukaryotic...
متن کاملUV-damage-mediated induction of homologous recombination in Arabidopsis is dependent on photosynthetically active radiation.
Plants are continuously subjected to UV-B radiation (UV-B; 280-320 nm) as a component of sunlight causing damage to the genome. For elimination of DNA damage, a set of repair mechanisms, mainly photoreactivation, excision, and recombination repair, has evolved. Whereas photoreactivation and excision repair have been intensely studied during the last few years, recombination repair, its regulati...
متن کاملPhotoreactivation rescue and hypermutability of ultraviolet-irradiated excisionless Drosophila melanogaster larvae.
There is accumulating evidence suggesting that expression of genes for repair of UV damage to DNA in mammals and fish is regulated developmentally. Therefore, the activity of excision repair and photoreactivation in vivo in young larvae of Drosophila melanogaster was examined in a strain carrying the mutation mus201 that was unable to carry out excision repair. The photoreactivation activity in...
متن کاملDNA damage and repair in eukaryotic cells.
DAMAGE IN DNA AFTER IRRADIATION CAN BE CLASSIFIED INTO FIVE KINDS: base damage, single-strand breaks, double-strand breaks, DNA-DNA cross-linking, and DNA-protein cross-linking. Of these, repair of base damage is the best understood. In eukaryotes, at least three repair systems are known that can deal with base damage: photoreactivation, excision repair, and post-replication repair. Photoreacti...
متن کاملDegree of ultraviolet radiation damage and repair capabilities are related to G+C content in marine vibriophages
A key issue in the ecology of viruses in the marine environment is the rate of viral production and decay. The ultraviolet (UV) radiation in sunlight has been found to cause loss of infectivity in marine bacteriophages at rates nearly equal to all other decay mechanisms combined. There are 2 main host-mediated mechanisms that can repair UV-damaged phage DNA: photoreactivation and excision repai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 212 17 شماره
صفحات -
تاریخ انتشار 2009